The new Ehcache 2.0.0 and Hibernate Caching SPI Provider

Presented by:
Chris Dennis, Software Engineer, Terracotta Inc.

May 12, 2010
Agenda

- Intro to Ehcache and Terracotta
- Ehcache and Ehcache + Terracotta
- Code: Scaling Spring Pet Clinic
 - With Hibernate
 - With JDBC direct
- Comparative Performance Testing Results
 - Database
 - Ehcache EX
 - Memcached
 - Well-known IMDG
- Just Released: Ehcache 2.0
About Ehcache

The world's most widely used Java cache

- Founded in 2003
- Apache 2.0 License
- Integrated by lots of projects, products
- Hibernate Provider implemented 2003
- Web Caching 2004
- Distributed Caching 2006
- Greg Luck becomes co-spec lead of JSR107
- JCACHE (JSR107) implementation 2007
- REST and SOAP APIs 2008
- SourceForge Project of the Month March 2009
- Acquired by Terracotta 2009
- 2 Releases 2009/2010: Integration with Terracotta Server Array & Perf
- Ehcache 2.0 March 2010
Ehcache 2.0
Ehcache before Terracotta

- Up to 8GB in-process
- Up to 20GB on disk
- Replicated Distribution up to 20 nodes
- Not coherent/transactional/HA
Ehcache after Terracotta

Simple + Performant + Coherent + HA + Scaleable
Adding a specific ehcache.xml

ehcache.xml:

```xml
<ehcache>

  <defaultCache maxElementsInMemory="10000"
    eternal="false"
    timeToLiveSeconds="120"/>

  <cache name="com.company.domain.Pets"
    maxElementsInMemory="10000"
    eternal="true">
    </cache>

  <cache name="com.company.domain.Owners"
    maxElementsInMemory="10000"
    timeToLiveSeconds="3000">
    </cache>

</ehcache>
```
Adding Terracotta

ehcache.xml

```xml
<ehcache>
  <terracottaConfig url="someserver:9510"/>
  <defaultCache maxElementsInMemory="10000"
    eternal="false"
    timeToLiveSeconds="120"/>

  <cache name="com.company.domain.Pets"
    maxElementsInMemory="10000"
    eternal="true">
    <terracotta clustered="true" coherent="false"/>
  </cache>

  <cache name="com.company.domain.Owners"
    maxElementsInMemory="10000"
    timeToLiveSeconds="3000">
    <terracotta clustered="true" coherent="true"/>
  </cache>

</ehcache>
```
Ehcache 2.0 - New Features

- **Hibernate 3.3+ Caching SPI**
 - Old SPI was heavily synchronized and not well suited to clusters
 - New SPI uses CacheRegionFactory
 - Fully cluster safe with Terracotta Server Array
 - Unification of the Ehcache and Terracotta 3.2 providers

- **JTA**
 - Cache as an XAResource
 - Detects most common Transaction Managers
 - Others configurable
 - Works with Spring, EJB and manual transactions
Ehcache 2.0 - New Features

- **Write-behind**
 - Offloads Databases with high write workloads
 - CacheWriter Interface to implement
 - `cache.putWithWriter(...)` and `cache.removeWithWriter(...)`
 - Write-through and Write-behind modes
 - Batching, coalescing and very configurable
 - Standalone with in-memory write-behind queue.
 - TSA with HA, durability and distributed workload balancing

- **Bulk Loading**
 - incoherent mode for startup or periodic cache loading
 - 10 x faster
 - No change to the API (put, load etc).
 - `SetCoherent()`, `isCoherent()`, `waitForCoherent()`
Ehcache 2.0 - New Features ...cont.

- New CAP configurability – per cache basis
 - coherent – run coherent or incoherent (faster)
 - synchronousWrites – true for ha, false is faster
 - copyOnRead – true to stop interactions between threads outside of the cache
 - Cluster events – notification of partition and reconnection

- Management
 - Dynamic Configuration of common cache configs from JMX and DevConsole
 - New web-based Monitoring with UI and API
Ehcache 2.0 Monitoring Options

- **JMX**
 - is built in to Ehcache but...
 - JMX needs use portmap
 - Slow
 - Machines may be headless

- Terracotta Dev Console (if using Terracotta)

- Ehcache Console, coming soon for supported customers
Terracotta Developer Console

- Cache hit ratios
- Hit/miss rates
- Hits on the database
- Cache puts
- Detailed efficiency of cache regions

Dramatically simplifies tuning and operations, and shows the database offload.
Ehcache Console

- Web based
- Configuration
- Efficiency
- Memory Use

- Comes with supported versions
- API to connect Operations Monitoring
Demo: Spring Pet Clinic
Code - Spring Pet Clinic

Pet Clinic A Spring Framework Demonstration

Welcome

- Find owner
- Display all veterinarians
- Tutorial
- Documentation

Home

Sponsored by SpringSource
Pet Clinic Domain Model

Domain Objects

- Vets
- Specialty
- Owner
- Pet
- PetType
- Visit
Code

Steps:

- Configure PetClinic for Hibernate
- Configure hibernate for second-level cache
- Configure hbm file for caching
- Update query code to add caching

Optional but recommended:

- add ehcache.xml to WEB-INF/classes
- specify cache regions and config
<ehcache>
 <defaultCache
 maxElementsInMemory="10000"
 eternal="false"
 timeToLiveSeconds="120"
 />

 <cache name="org.hibernate.cache.UpdateTimestampsCache"
 maxElementsInMemory="10000"
 timeToIdleSeconds="300"
 />

 <cache name="org.hibernate.cache.StandardQueryCache"
 maxElementsInMemory="10000"
 timeToIdleSeconds="300"
 />
</ehcache>
Performance
Performance

- Testing Methodology
- Results in Details
- Conclusions
Standalone Performance

- Read Performance
Stand-alone Performance

- Put Performance

![Graph comparing cache PUT (WRITE) performance](chart.png)
Ehcache in-process vs Memcached
EHcache with Terracotta vs the Rest

Application
- Tests done with Owners = 25K and 125K which translates to total objects of 0.3 M and 1.5 M
- Minimal tuning.

Cluster Configuration:
- 8 Client JVMs (1.75G Heap)
- 1 (+0) Terracotta Servers (6G Heap)
- MySql: sales18.
Ehcache with Terracotta vs the Rest

- **Ehcache**
 - Replicated with RMI not included because not coherent
 - Single TSA Server
 - 15 threads and some with 100 threads

- **IMDG**
 - 15 threads
 - Cache deployed in Partitioned Mode
 - Tests were also done with Replicated – which did well for small cache sizes but failed to complete with larger cache sizes. So, it is not included.

- **memcached**
 - 15 threads
 - 1 server
Hibernate - Read Only TPS
Hibernate - Read Write TPS

The chart above illustrates the performance comparison between different caching strategies and database systems. The x-axis represents time in hours (25h to 125h), and the y-axis represents transactions per second (TPS). The lines indicate the TPS for various caching and database configurations, showing how read and write operations scale over time.
Hibernate - Read Only Latency
Hibernate - Read Write Latency

The diagram compares the read and write latency of different database systems and cache configurations. It shows the performance at two different data sizes: 128K and 256K. The systems compared include:

- Ehoache/TSA 1.7
- Ehoache/TSA 1.8
- IMDB Partitioned
- Memcached
- MySQL

The x-axis represents latency in milliseconds, while the y-axis represents the amount of data. The diagram illustrates how each system performs under these conditions, with bars indicating the latency for each data size.
Test Source

- The code behind the benchmarks is in the Terracotta Community SVN repository.

- Download https://svn.terracotta.org/repo/forge/projects/ehcacheperf/
 (Terracotta Community Login Required)
Performance Conclusions

- With Hibernate, Using Spring Pet Clinic

 - After app servers and DBs tuned by independent 3rd parties
 - 30-95% database load reduction
 - 80 times read-only performance of MySQL
 - Notably lower latency

- 1.5 ms versus 120 ms for database (25k)
Wrap Up
Enterprise Support Included in Commercial Offerings:

- 24x7 support for mission critical business functions
- Guaranteed time-to-respond service level agreement (SLA)
- Thoroughly tested patches
Additional Ehcache Information

- Website: www.ehcache.org
- Documentation: www.ehcache.org/documentation
- Hibernate: www.ehcache.org/documentation/hibernate.html
- Commercial Products: www.terracotta.org/ehcache/
- Twitter: www.twitter.com/Ehcache
Terracotta Contact Information

- Website: www.terracottatech.com
- Telephone: +1 415-738-4000
- Email: info@terracottatech.com
- Facebook: www.facebook.com/Terracotta
- Twitter: www.twitter.com/TerracottaTech